Python으로 작성된 많은 프로젝트들이 비교적 짧은 코드로도 강력한 기능을 구현할 수 있는 이유는 여러 가지가 있습니다.
- 높은 추상화 수준:
Python은 고수준 언어로, 복잡한 작업들을 간결한 코드로 표현할 수 있도록 설계되었습니다. 이는 반복적이고 보일러플레이트 코드 없이도 핵심 로직에 집중할 수 있게 해줍니다. - 풍부한 라이브러리와 프레임워크 활용:
Deep Seek 같은 프로젝트에서는 외부 라이브러리나 프레임워크(예: 딥러닝 프레임워크, 데이터 처리 라이브러리 등)를 많이 활용하는 경우가 많습니다. 이러한 라이브러리들은 내부적으로 C/C++ 등 최적화된 언어로 구현되어 있어, Python 코드에서는 간단한 인터페이스만 호출하면 복잡한 기능을 사용할 수 있습니다. - 모듈화와 재사용:
Python의 모듈 시스템과 객체 지향 설계 덕분에 코드가 잘 구조화되어 있다면, 반복되는 기능을 재사용할 수 있어 전체 코드베이스의 크기가 작아질 수 있습니다.
즉, Deep Seek의 소스 코드가 상대적으로 작아 보이는 것은 Python의 간결한 문법과 외부 라이브러리의 강력한 기능 덕분이라고 볼 수 있습니다.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
import math from dataclasses import dataclass from typing import Tuple, Optional, Literal import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist from kernel import act_quant, weight_dequant, fp8_gemm world_size = 1 rank = 0 block_size = 128 gemm_impl: Literal["bf16", "fp8"] = "bf16" attn_impl: Literal["naive", "absorb"] = "absorb" @dataclass class ModelArgs: """ Data class for defining model arguments and hyperparameters. Attributes: max_batch_size (int): Maximum batch size. max_seq_len (int): Maximum sequence length. dtype (Literal["bf16", "fp8"]): Data type for computations. vocab_size (int): Vocabulary size. dim (int): Model dimension. inter_dim (int): Intermediate dimension for MLP layers. moe_inter_dim (int): Intermediate dimension for MoE layers. n_layers (int): Number of transformer layers. n_dense_layers (int): Number of dense layers in the model. n_heads (int): Number of attention heads. n_routed_experts (int): Number of routed experts for MoE layers. n_shared_experts (int): Number of shared experts for MoE layers. n_activated_experts (int): Number of activated experts in MoE layers. n_expert_groups (int): Number of expert groups. n_limited_groups (int): Number of limited groups for MoE routing. score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing. route_scale (float): Scaling factor for routing scores. q_lora_rank (int): LoRA rank for query projections. kv_lora_rank (int): LoRA rank for key-value projections. qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings. qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings. v_head_dim (int): Dimension for value projections. original_seq_len (int): Original sequence length. rope_theta (float): Base for rotary positional encoding. rope_factor (float): Scaling factor for extended sequence lengths. beta_fast (int): Fast beta correction factor. beta_slow (int): Slow beta correction factor. mscale (float): Scaling factor for extended attention. """ max_batch_size: int = 8 max_seq_len: int = 4096 * 4 dtype: Literal["bf16", "fp8"] = "bf16" vocab_size: int = 102400 dim: int = 2048 inter_dim: int = 10944 moe_inter_dim: int = 1408 n_layers: int = 27 n_dense_layers: int = 1 n_heads: int = 16 # moe n_routed_experts: int = 64 n_shared_experts: int = 2 n_activated_experts: int = 6 n_expert_groups: int = 1 n_limited_groups: int = 1 score_func: Literal["softmax", "sigmoid"] = "softmax" route_scale: float = 1. # mla q_lora_rank: int = 0 kv_lora_rank: int = 512 qk_nope_head_dim: int = 128 qk_rope_head_dim: int = 64 v_head_dim: int = 128 # yarn original_seq_len: int = 4096 rope_theta: float = 10000.0 rope_factor: float = 40 beta_fast: int = 32 beta_slow: int = 1 mscale: float = 1. class ParallelEmbedding(nn.Module): """ Embedding layer with parallelism support across distributed processes. Args: vocab_size (int): Vocabulary size. dim (int): Embedding dimension. """ def __init__(self, vocab_size: int, dim: int): super().__init__() self.vocab_size = vocab_size self.dim = dim assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})" self.part_vocab_size = (vocab_size // world_size) self.vocab_start_idx = rank * self.part_vocab_size self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for parallel embedding layer. Args: x (torch.Tensor): Input tensor containing token indices. Returns: torch.Tensor: Embedded representations. Raises: ValueError: If `world_size` is not defined. """ if world_size > 1: mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx) x = x - self.vocab_start_idx x[mask] = 0 y = F.embedding(x, self.weight) if world_size > 1: y[mask] = 0 dist.all_reduce(y) return y def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor: """ Applies a linear transformation to the incoming data: y = xA^T + b. This function supports specialized implementations based on quantization and tensor formats. Args: x (torch.Tensor): The input tensor. weight (torch.Tensor): The weight tensor. It may be quantized and requires dequantization for certain cases. bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None. Returns: torch.Tensor: The result of the linear transformation, which may involve quantization-aware computations depending on the input parameters. Notes: - If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version is used for computation. - If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied. - For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation. """ if weight.element_size() > 1: return F.linear(x, weight, bias) elif gemm_impl == "bf16": weight = weight_dequant(weight, weight.scale) return F.linear(x, weight, bias) else: x, scale = act_quant(x, block_size) y = fp8_gemm(x, scale, weight, weight.scale) if bias is not None: y += bias return y class Linear(nn.Module): """ Custom linear layer with support for quantized weights and optional bias. Args: in_features (int): Number of input features. out_features (int): Number of output features. bias (bool): Whether to include a bias term. Defaults to False. dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. """ dtype = torch.bfloat16 def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype)) if self.weight.element_size() == 1: scale_out_features = (out_features + block_size - 1) // block_size scale_in_features = (in_features + block_size - 1) // block_size self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32)) else: self.register_parameter("scale", None) if bias: self.bias = nn.Parameter(torch.empty(out_features)) else: self.register_parameter("bias", None) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the custom linear layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Transformed tensor after linear computation. """ return linear(x, self.weight, self.bias) class ColumnParallelLinear(Linear): """ Linear layer with column parallelism, splitting output features across distributed processes. Args: in_features (int): Number of input features. out_features (int): Total number of output features. bias (bool): Whether to include a bias term. Defaults to False. dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. """ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})" self.part_out_features = out_features // world_size super().__init__(in_features, self.part_out_features, bias, dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for column parallel linear layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Transformed tensor with column-parallel computation. """ y = linear(x, self.weight, self.bias) return y class RowParallelLinear(Linear): """ Linear layer with row parallelism, splitting input features across distributed processes. Args: in_features (int): Total number of input features. out_features (int): Number of output features. bias (bool): Whether to include a bias term. Defaults to False. dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`. """ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None): assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})" self.part_in_features = in_features // world_size super().__init__(self.part_in_features, out_features, bias, dtype) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for row parallel linear layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Transformed tensor with row-parallel computation. """ y = linear(x, self.weight) if world_size > 1: dist.all_reduce(y) if self.bias is not None: y += self.bias return y class RMSNorm(nn.Module): """ Root Mean Square Layer Normalization (RMSNorm). Args: dim (int): Dimension of the input tensor. eps (float): Epsilon value for numerical stability. Defaults to 1e-6. """ def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x: torch.Tensor): """ Forward pass for RMSNorm. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Normalized tensor with the same shape as input. """ return F.rms_norm(x, (self.dim,), self.weight, self.eps) def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor: """ Precomputes frequency-based complex exponential values for rotary positional embeddings. Args: args (ModelArgs): Model arguments containing positional embedding parameters. Returns: torch.Tensor: Precomputed complex exponential values for positional embeddings. """ dim = args.qk_rope_head_dim seqlen = args.max_seq_len beta_fast = args.beta_fast beta_slow = args.beta_slow base = args.rope_theta factor = args.rope_factor def find_correction_dim(num_rotations, dim, base, max_seq_len): """ Computes the correction dimension for a given number of rotations in the rotary positional embedding. Args: num_rotations (float): Number of rotations to compute the correction for. dim (int): Dimensionality of the embedding space. base (float): Base value for the exponential computation. max_seq_len (int): Maximum sequence length. Returns: float: The correction dimension based on the input parameters. """ return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base)) def find_correction_range(low_rot, high_rot, dim, base, max_seq_len): """ Computes the range of correction dimensions for rotary positional embeddings. Args: low_rot (float): Lower bound for the number of rotations. high_rot (float): Upper bound for the number of rotations. dim (int): Dimensionality of the embedding space. base (float): Base value for the exponential computation. max_seq_len (int): Maximum sequence length. Returns: Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices. """ low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len)) high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len)) return max(low, 0), min(high, dim-1) def linear_ramp_factor(min, max, dim): """ Computes a linear ramp function used to smooth values between a minimum and maximum range. Args: min (float): Minimum value for the ramp function. max (float): Maximum value for the ramp function. dim (int): Dimensionality of the ramp tensor. Returns: torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1, clamped to the range [0, 1]. """ if min == max: max += 0.001 linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim)) if seqlen > args.original_seq_len: low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len) smooth = 1 - linear_ramp_factor(low, high, dim // 2) freqs = freqs / factor * (1 - smooth) + freqs * smooth t = torch.arange(seqlen) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) return freqs_cis def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor: """ Applies rotary positional embeddings to the input tensor. Args: x (torch.Tensor): Input tensor with positional embeddings to be applied. freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings. Returns: torch.Tensor: Tensor with rotary embeddings applied. """ dtype = x.dtype x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2)) freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1)) y = torch.view_as_real(x * freqs_cis).flatten(3) return y.to(dtype) class MLA(nn.Module): """ Multi-Headed Attention Layer (MLA). Attributes: dim (int): Dimensionality of the input features. n_heads (int): Number of attention heads. n_local_heads (int): Number of local attention heads for distributed systems. q_lora_rank (int): Rank for low-rank query projection. kv_lora_rank (int): Rank for low-rank key/value projection. qk_nope_head_dim (int): Dimensionality of non-positional query/key projections. qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections. qk_head_dim (int): Total dimensionality of query/key projections. v_head_dim (int): Dimensionality of value projections. softmax_scale (float): Scaling factor for softmax in attention computation. """ def __init__(self, args: ModelArgs): super().__init__() self.dim = args.dim self.n_heads = args.n_heads self.n_local_heads = args.n_heads // world_size self.q_lora_rank = args.q_lora_rank self.kv_lora_rank = args.kv_lora_rank self.qk_nope_head_dim = args.qk_nope_head_dim self.qk_rope_head_dim = args.qk_rope_head_dim self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim self.v_head_dim = args.v_head_dim if self.q_lora_rank == 0: self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim) else: self.wq_a = Linear(self.dim, self.q_lora_rank) self.q_norm = RMSNorm(self.q_lora_rank) self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim) self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim) self.kv_norm = RMSNorm(self.kv_lora_rank) self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim)) self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim) self.softmax_scale = self.qk_head_dim ** -0.5 if args.max_seq_len > args.original_seq_len: mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0 self.softmax_scale = self.softmax_scale * mscale * mscale if attn_impl == "naive": self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False) self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False) else: self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False) self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False) def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]): """ Forward pass for the Multi-Headed Attention Layer (MLA). Args: x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim). start_pos (int): Starting position in the sequence for caching. freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. Returns: torch.Tensor: Output tensor with the same shape as the input. """ bsz, seqlen, _ = x.size() end_pos = start_pos + seqlen if self.q_lora_rank == 0: q = self.wq(x) else: q = self.wq_b(self.q_norm(self.wq_a(x))) q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim) q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) q_pe = apply_rotary_emb(q_pe, freqs_cis) kv = self.wkv_a(x) kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis) if attn_impl == "naive": q = torch.cat([q_nope, q_pe], dim=-1) kv = self.wkv_b(self.kv_norm(kv)) kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim) k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1) k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1) self.k_cache[:bsz, start_pos:end_pos] = k self.v_cache[:bsz, start_pos:end_pos] = v scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale else: wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size) wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank) q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim]) self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv) self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2) scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) + torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale if mask is not None: scores += mask.unsqueeze(1) scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x) if attn_impl == "naive": x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos]) else: x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos]) x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:]) x = self.wo(x.flatten(2)) return x class MLP(nn.Module): """ Multi-Layer Perceptron (MLP) used as a feed-forward layer. Attributes: w1 (nn.Module): Linear layer for input-to-hidden transformation. w2 (nn.Module): Linear layer for hidden-to-output transformation. w3 (nn.Module): Additional linear layer for feature transformation. """ def __init__(self, dim: int, inter_dim: int): """ Initializes the MLP layer. Args: dim (int): Input and output dimensionality. inter_dim (int): Hidden layer dimensionality. """ super().__init__() self.w1 = ColumnParallelLinear(dim, inter_dim) self.w2 = RowParallelLinear(inter_dim, dim) self.w3 = ColumnParallelLinear(dim, inter_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the MLP layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after MLP computation. """ return self.w2(F.silu(self.w1(x)) * self.w3(x)) class Gate(nn.Module): """ Gating mechanism for routing inputs in a mixture-of-experts (MoE) model. Attributes: dim (int): Dimensionality of input features. topk (int): Number of top experts activated for each input. n_groups (int): Number of groups for routing. topk_groups (int): Number of groups to route inputs to. score_func (str): Scoring function ('softmax' or 'sigmoid'). route_scale (float): Scaling factor for routing weights. weight (torch.nn.Parameter): Learnable weights for the gate. bias (Optional[torch.nn.Parameter]): Optional bias term for the gate. """ def __init__(self, args: ModelArgs): """ Initializes the Gate module. Args: args (ModelArgs): Model arguments containing gating parameters. """ super().__init__() self.dim = args.dim self.topk = args.n_activated_experts self.n_groups = args.n_expert_groups self.topk_groups = args.n_limited_groups self.score_func = args.score_func self.route_scale = args.route_scale self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim)) self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Forward pass for the gating mechanism. Args: x (torch.Tensor): Input tensor. Returns: Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices. """ scores = linear(x, self.weight) if self.score_func == "softmax": scores = scores.softmax(dim=-1, dtype=torch.float32) else: scores = scores.sigmoid() original_scores = scores if self.bias is not None: scores = scores + self.bias if self.n_groups > 1: scores = scores.view(x.size(0), self.n_groups, -1) if self.bias is None: group_scores = scores.amax(dim=-1) else: group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1) indices = group_scores.topk(self.topk_groups, dim=-1)[1] mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False) scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1) indices = torch.topk(scores, self.topk, dim=-1)[1] weights = original_scores.gather(1, indices) if self.score_func == "sigmoid": weights /= weights.sum(dim=-1, keepdim=True) weights *= self.route_scale return weights.type_as(x), indices class Expert(nn.Module): """ Expert layer for Mixture-of-Experts (MoE) models. Attributes: w1 (nn.Module): Linear layer for input-to-hidden transformation. w2 (nn.Module): Linear layer for hidden-to-output transformation. w3 (nn.Module): Additional linear layer for feature transformation. """ def __init__(self, dim: int, inter_dim: int): """ Initializes the Expert layer. Args: dim (int): Input and output dimensionality. inter_dim (int): Hidden layer dimensionality. """ super().__init__() self.w1 = Linear(dim, inter_dim) self.w2 = Linear(inter_dim, dim) self.w3 = Linear(dim, inter_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the Expert layer. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after expert computation. """ return self.w2(F.silu(self.w1(x)) * self.w3(x)) class MoE(nn.Module): """ Mixture-of-Experts (MoE) module. Attributes: dim (int): Dimensionality of input features. n_routed_experts (int): Total number of experts in the model. n_local_experts (int): Number of experts handled locally in distributed systems. n_activated_experts (int): Number of experts activated for each input. gate (nn.Module): Gating mechanism to route inputs to experts. experts (nn.ModuleList): List of expert modules. shared_experts (nn.Module): Shared experts applied to all inputs. """ def __init__(self, args: ModelArgs): """ Initializes the MoE module. Args: args (ModelArgs): Model arguments containing MoE parameters. """ super().__init__() self.dim = args.dim assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})" self.n_routed_experts = args.n_routed_experts self.n_local_experts = args.n_routed_experts // world_size self.n_activated_experts = args.n_activated_experts self.experts_start_idx = rank * self.n_local_experts self.experts_end_idx = self.experts_start_idx + self.n_local_experts self.gate = Gate(args) self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None for i in range(self.n_routed_experts)]) self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass for the MoE module. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after expert routing and computation. """ shape = x.size() x = x.view(-1, self.dim) weights, indices = self.gate(x) y = torch.zeros_like(x) counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist() for i in range(self.experts_start_idx, self.experts_end_idx): if counts[i] == 0: continue expert = self.experts[i] idx, top = torch.where(indices == i) y[idx] += expert(x[idx]) * weights[idx, top, None] z = self.shared_experts(x) if world_size > 1: dist.all_reduce(y) return (y + z).view(shape) class Block(nn.Module): """ Transformer block combining attention and feed-forward layers. Attributes: attn (nn.Module): Attention layer (MLA). ffn (nn.Module): Feed-forward network (MLP or MoE). attn_norm (nn.Module): Layer normalization for attention. ffn_norm (nn.Module): Layer normalization for feed-forward network. """ def __init__(self, layer_id: int, args: ModelArgs): """ Initializes the Transformer block. Args: layer_id (int): Layer index in the transformer. args (ModelArgs): Model arguments containing block parameters. """ super().__init__() self.attn = MLA(args) self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args) self.attn_norm = RMSNorm(args.dim) self.ffn_norm = RMSNorm(args.dim) def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor: """ Forward pass for the Transformer block. Args: x (torch.Tensor): Input tensor. start_pos (int): Starting position in the sequence. freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention. Returns: torch.Tensor: Output tensor after block computation. """ x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask) x = x + self.ffn(self.ffn_norm(x)) return x class Transformer(nn.Module): """ Transformer model with positional embeddings, multiple layers, and output projection. Attributes: max_seq_len (int): Maximum sequence length for the transformer. embed (nn.Module): Embedding layer for input tokens. layers (torch.nn.ModuleList): List of transformer blocks. norm (nn.Module): Layer normalization applied after all blocks. head (nn.Module): Output projection layer mapping to vocabulary size. freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings. """ def __init__(self, args: ModelArgs): """ Initializes the Transformer model. Args: args (ModelArgs): Model arguments containing transformer parameters. """ global world_size, rank world_size = dist.get_world_size() if dist.is_initialized() else 1 rank = dist.get_rank() if dist.is_initialized() else 0 Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16 super().__init__() self.max_seq_len = args.max_seq_len self.embed = ParallelEmbedding(args.vocab_size, args.dim) self.layers = torch.nn.ModuleList() for layer_id in range(args.n_layers): self.layers.append(Block(layer_id, args)) self.norm = RMSNorm(args.dim) self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype()) self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False) @torch.inference_mode() def forward(self, tokens: torch.Tensor, start_pos: int = 0): """ Forward pass for the Transformer model. Args: tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len). start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0. Returns: torch.Tensor: Logits tensor of shape (batch_size, vocab_size). """ seqlen = tokens.size(1) h = self.embed(tokens) freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen] mask = None if seqlen > 1: mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) for layer in self.layers: h = layer(h, start_pos, freqs_cis, mask) h = self.norm(h)[:, -1] logits = self.head(h) if world_size > 1: all_logits = [torch.empty_like(logits) for _ in range(world_size)] dist.all_gather(all_logits, logits) logits = torch.cat(all_logits, dim=-1) return logits if __name__ == "__main__": torch.set_default_dtype(torch.bfloat16) torch.set_default_device("cuda") torch.manual_seed(0) args = ModelArgs() x = torch.randint(0, args.vocab_size, (2, 128)) model = Transformer(args) print(model(x).size()) |